A STEFAN PROBLEM WITH A BOUNDARY CONDITION OF THE
FOURTH KIND
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We reduce a Stefan problem with a boundary condition of the fourth kind, using the method of quasi-
stationary states, to the solution of a system of two first-order ordinary differential equations in the un-
knowns of the boundary separating the phases and the boundary temperature.

In calculating the work cycles of underground reservoirs of condensed gases there is considerable
interest in the temperature variation dynamics inside the reservoir.

If such a reservoir is situated in a water-saturated soil, then after it is filled, the soil begins to freeze
over and the temperature of the compressed gas begins to increase (see [1]}). The following two problems
are of interest from the point of view of rational operation of the reservoir: a) After how long a time tg is
the temperature TI (t) of the compressed gas raised from its initial temperature T; to some temperature
T, defined by technological considerations ? b) Whatmustbe the thermal resistance of the reservoir walls
so that after the given time tg the temperature Tj- {t) will not have risen ahove a permissible level ?

We assume that the reservoir is a sphere of radius R,. Then we formulate the following problem for
the determination of Tg(t).

Suppose that the region exterior to the sphere of radius R, contains water-saturated soil with temper-
ature T, >0. Let the interior of the sphere be occupied by a well mixed liquid, which has at the time t=0
a temperature T; <0. We assume also that this sphere has a known thermal resistance. It is obvious that
freezing of the soil around the sphere commences at some instant t=t* We determine the law of motion
for the boundary R, (t) separating the phases and the temperature variation of the liquid inside the sphere.
To do this we need to solve a Stefan problem having the following boundary and initial conditions [2]:
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Here T is the temperature, t is the time. r is a variable radius, R, is the sphere radius, R_ is the
coordinate of the boundary separating the phases; n. A. ¢. and p are. respectively. the thermal diffusivity
coefficient, the thermal conductivity coefficient. the specific heat. and the density; M is the mass of the
compressed gas: S(Ry) is the surface of the sphere; T, is the initial soil temperature and T_ is the phase
change temperature; L is the latent heat of the phase transition; W is the moisture content, the subscripts
1 and 2 referring, respectively, to the frozen and thawed zones; the subscript g is attached to the com -
pressed gas parameters.
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It is well known (see [3]) that for stationary boundary conditions of the first and third kinds the small
rate of movement of the boundary separating the phases makes it possible to usefully employ the quasista-
tionary method (see [4]). The slow rate of movement of the boundary stipulates a slow change in the temp-
erature of the compressed gas inside the sphere, since an arbitrary isotherm T <0 cannot fit the isotherm
T= Tp: 0 (Tp is the phase transition temperature from water to ice).

Then, following the method referred to above, we have
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The third and sixth conditions in Eq. (1), together with the Eqs. (2), yield a system of two ordinary
differential equations in Rp(t) and Tg(t).
In the dimensionless variables
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For assigned initial conditions it is necessary to solve the corresponding problem without phase
transitions and to determine 7* = t* /Ry and w (7% =T _(t*)/T; from the condition of equality of the temp-
erature on the outer boundary of the sphere to ﬁme phase transition temperature.

The initial conditions will then have the form
Sg (%) - g, & (1%) - 1 (4)

The system (3) with the initial conditions (12) can be solved on an electronic digital computer using
standard procedures.

The method of solving problem a) is obvious. Knowing the solution of the system (3) with the initial
conditions (4) for #,(7). we determine the time T tg‘rh/Ro2 from the condition
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If we neglect the thermal resistance of the hull, then in place of the initial conditions (4) we shall
have
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which simplifies our problem since the parameters determined from the problem without phase transition
all vanish, The system corresponding to this case is obtained from Egs. (3) by letting h —«,

If we neglect the heat flow from the thawed zone, which in the majority of practically important cases
is small by virtue of the insignificant difference of the initial soil temperature and the phase transition
temperature, then from the system (3) we obtain
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J \\ 2 The initial conditions for this system are given by equations {3}, The
solution of the system (6), (7) may be found in terms of quadratures. Divid-
\ \ ing Egs. (6) by Eq. (7). we have
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g¢ > *bLJ meter h. Physically this means that for an arbitrary thermal resistance
’ - there corresponds to a definite temperature inside the sphere a definite posi-
Fig. 1 tion of the boundary separating the phases. The role of h is then reduced

merely to influencing the rate at which this state is attained.
Substituting Eq. (10) into Eq. (7) and carrying out the integration, we obtain
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For problem a) we obtain the desired time 7, from Eq. (11 by substituting ¢ _ into the right hand
side for §; Eg is obtained uniquely from Eq. {10) in terms of the assigned temperature &gi'

Under these same assumptions we can also find the solution of problem b) in explicit form.

To do this we solve Eq. (11) for h. wherein all the insulation parameters make their appearance:
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Substituting 7 in place of T and Eg. obtained from Eq. (10) for a known value of ”Qg’ in place of &, we
find the necessary value of h.

If the denominator in Eq. {(12) vanishes, then h=«<, i.e., the curve
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shown in the figure, is the solution &(7) of the system (6). (7) in the absence of insulation.
The quantity b here is the dimensionless limiting radius for the boundary of freezing.

The problem in which insulation is nceded is solved by having the point (7_, ¢ ) fall into the shaded
region of the figure. When the point lies outside this region the conditions of problem b) are satisfied.
also without insulation.
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